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ABSTRACT

Despite the success of Instruction Tuning (IT) in training large language models
(LLMs) to perform arbitrary user-specified tasks, these models often still leverage
spurious or biased features learned from their training data, leading to undesired
behaviours when deploying them in new contexts. In this work, we introduce
Focus Instruction Tuning (FIT), which trains LLMs to condition their responses
by “focusing on” specific features whilst ignoring others, leading to different be-
haviours based on what features are specified. Across several experimental set-
tings, we show that focus-tuned models can be adaptively steered by focusing on
different features at inference-time: for instance, robustness can be improved by
focusing on task-causal features and ignoring spurious features, and social bias
can be mitigated by ignoring demographic categories. Furthermore, FIT can steer
behaviour in new contexts, generalising under distribution shift and to new unseen
features at inference time, and thereby facilitating more robust, fair, and control-
lable LLM applications in real-world environments.

1 INTRODUCTION

Instruction Tuning (IT) (Zhang et al., [2023)), a specialised form of supervised fine-tuning (SFT),
has become an essential step in the process of developing effective instruction-following large lan-
guage models (LLMs) (Ouyang et al.| [2022; Touvron et al., [2023; |Chen et al.| [2024). While ex-
tensive pre-training to perform next token prediction allows LLMs to extract common patterns and
knowledge from large text corpora, IT fine-tunes these models on input-output pairs complemented
by natural-language task instructions, teaching them to perform open-ended language-based tasks
given instructions (Huang et al., 2023). However, despite the improvements observed in zero-shot
generalisation from IT, recent studies suggest that some of these gains may be superficial, stemming
from the models’ ability to learn task template formats or spurious input/output correlations rather
than a more generalisable instruction-following capability (Kung & Peng||2023; /Ghosh et al.,[2024)).
As aresult, LLMs may fail to generalise to new contexts where the same templates or spurious cor-
relations are not present (Kung & Peng, [2023).

To address these limitations, we propose Focus Instruction Tuning (FIT), an extension of traditional
IT where LLMs are also fine-tuned with respect to an instruction regarding which features to “focus
on” or “not focus on”. Training LLMs to condition responses on the provided focus specification,
where responses to the same input differ based on the specified features, allows end users to dy-
namically steer model behaviour by indicating which features should play a role or be ignored in
performing a task. For instance, in Figure [T] we show how FIT can be used to steer a model to ig-
nore gender stereotypes and focus instead on task-relevant information in order to correctly solve a
question-answering task. In our experiments, we demonstrate that FIT is effective at steering models
to ignore known spurious features while focusing on causal (task-relevant) features (see Section [))
across a variety of features and tasks such as sentiment analysis and natural language inference, and
can be used to mitigate social bias by ignoring demographic features in question-answering. We find
that FIT is also robust to distribution shifts over feature values, and can generalise to new, held-out
features not encountered during training. In sum, our primary contributions are as follows:

1. We introduce Focus Instruction Tuning (FIT), a method that allows users to flexibly and
dynamically specify what features a model should or should not focus on when performing
a task at inference time. FIT enables practitioners to incorporate domain-specific knowl-
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Figure 1: Focus Instruction Tuning (FIT). In the example above, a model that is simply Instruction
Tuned would follow biases present in the training set. On the other hand, a FIT model can dynam-
ically focus or ignore specific features of the input. Here we report a sample from BBQ (Parrish
et al.| [2022) (a question- answering dataset designed to elicit incorrect answers from models that
perform the task by resorting to socially biased stereotypes). Both a man and a woman are present
at an engineering candidate’s interview. When asked who made the technical question, due to the
pre-training and instruction tuning biases, a model could respond the man did, despite the conflict-
ing evidence present in the context. A focus-tuned model can ignore the gender feature and focus
instead on the interview content.

edge about causal, spurious, or bias-relevant features in order to steer models according to
the desired feature specification.

2. We experiment with FIT across several key NLP tasks, including sentiment analysis, nat-
ural language inference, and question-answering. We find that FIT is highly effective for
steering behaviour on all tasks with respect to a variety of lexical, distributional, semantic,
and demographic features.

3. We show that FIT generalises with respect to (a) distribution shift over feature values and
(b) focusing on new features not seen during training.

2 BACKGROUND AND RELATED WORK

2.1 SPURIOUS FEATURE LEARNING

Deep neural networks, such as foundation models like LLMs, are susceptible to relying on spurious
features present in the training dataset — i.e., input features that are correlated with outputs in the
training distribution, but are not correlated in all test distributions (Ye et al.,[2024). Relying on spu-
rious features leads models to fail to generalise under distribution shifts where such correlations may
no longer hold [Wang et al.|(2023a). Spurious features have been extensively studied in computer
vision, encompassing features such as background colour (Xiao et al. [2021; Venkataramani et al.,
2024} |Arjovsky et al., 2019) or texture (Geirhos et al., [2018} |Baker et al.| [2018]), and are also preva-
lent in many widely used NLP benchmarks (Sun et al.| | 2024b; [Borkan et al.,|2019). For instance, the
token SPIELBERG is spuriously correlated with positive sentiment in datasets like SST-2 (Socher
et al., [2013b)), meaning that models trained on SST-2 may learn to predict sentiment by leveraging
these spurious features instead of more general sentiment features (Wang & Culottal [2020). This
reliance on non-causal features undermines the robustness of models in generalising to distribution
shift.

A variety of approaches have been explored to detect and mitigate the effects of spurious feature
learning, particularly under distribution shifts. Traditional approaches include prompt engineering
(Sun et al. |2024b), regularisation techniques (Arjovsky et al., 2019; (Chew et al., 2024), and di-
rectly incorporating causal inference strategies (Wang & Culotta, [2020; 202 1; [Udomcharoenchaikit
et al.| [2022). Substantial work in mechanistic interpretability has also aimed to discover models’
representation and use of task-causal or spurious features: for instance, causal probing (which trains
probing classifiers to recognise and modify supervised feature representations encoded by founda-
tion models; see |Belinkov} 2022} |Canby et al.| 2024} |[Davies & Khakzar}, [2024) has been used to
study how models leverage causal versus spurious features features in the context of a given task
(Ravfogel et al., [2021}; [Lasri et al., 2022 |Davies et al.| 2023). Other works have leveraged unsuper-
vised mechanistic interpretability methods, such as circuit discovery techniques (Wang et al.,[2023b;
Conmy et al.| [2023) and sparse auto-encoders (Subramanian et al., 2018; |Yun et al., 2021), to im-
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prove generalisation by discovering spurious features leveraged by models in performing a given
task and ablating their use of these features (Gandelsman et al., [2024}; Marks et al., [2024). Finally,
concept removal methods locate and manipulate supervised feature representations corresponding
to bias features encoded by foundation models in order to remove these features (Ravfogel et al.,
2020;12022;12023;; Iskander et al., 2023} |Belrose et al., [2024; [Kuzmin et al.,|2024).

2.2 CONTROLLING LLMs

Instruction Tuning. Due to the next-word prediction training objective, large language models
(LLMs) often struggle by default to generate outputs that align with human instructions in down-
stream applications (Huang et al.,|2023). Instruction-tuning (IT) mitigates this issue by fine-tuning
pre-trained LLMs on datasets composed of instruction-response pairs (Zhang et al.}|2023), aiming to
align the responses of the fine-tuned model more closely with the distributions preferred by humans
(Ouyang et al., [2022). There are several popular approaches for collecting IT training data, such as
using human-annotated data (Dolly} 2023)), extracting datasets from existing collections (Longpre
et al., 2023} Mishra et al., |2022)), or gathering data from internet sources (Zhou et al. 2024). IT
datasets can also be synthesised with LLMs, either by bootstraping them from the same model that
will be instruction-tuned on them (Wang et al., [2023c} [Chen et al., [2024), or by distilling from a
larger or more powerful model to instruction-tune smaller models (Taor1 et al., |2023; Mitra et al.,
2023 Xu et al., [2023)).

Despite the success of IT in zero-shot generalisation, (Gudibande et al.| (2023) find that improve-
ments on many downstream benchmark tasks may be largely due to coverage of task data within
IT training datasets; and bootstrapping IT methods (which, in principle, might not be subject to this
issue provided they synthesise novel IT task instances) require a robust and effective LLM for fine-
tuning to avoid degenerate training cycles (Zhang et al.,|2023). Furthermore, |Kung & Peng| (2023)
show that some of the downstream performance gains from IT can be attributed to models’ ability
to learn surface-level patterns, such as the required answer format, rather than acquiring more gen-
eralisable instruction-following skills. These limitations underscore the need for advancements in
supervised fine-tuning (SFT) methods beyond IT to facilitate more predictable and reliable control
of downstream model behaviours.

Refocusing LLMs. Several methods have been proposed to better control instruction-tuned models
both during and after training. Llama-Guard (Inan et al.| 2023) fine-tunes LLMs to detect predefined
risk features in inputs and outputs based on a user-specified taxonomy, such as identifying sexual
content in inappropriate contexts. JsonTuning (Gao et al., [2023) enhances traditional instruction
tuning by enforcing structured input and output formats in JSON, clarifying task requirements and
reducing sensitivity to paraphrasing (Sun et al., 2024a)). In contrast, Focus Instruction Tuning (FIT),
as introduced in this work, provides a more flexible and powerful approach. While Llama-Guard
operates only post-training and is limited to the safety domain, FIT enables fine-grained control
both during and after training, conditioning models on a broader range of features across arbitrary
domains via natural-language specifications. Moreover, unlike JsonTuning, which is restricted to
enforcing output structure, FIT allows users to specify input features, enabling the model to ignore
spurious correlations or highlight task-relevant attributes.

3 METHODOLOGY

Preliminaries. We consider a pre-trained, decoder-only large language model (LLM) pg that models
the probability distribution over its vocabulary ) autoregressively. For an input sequence x =
[z1,...,2L] € VE, the joint probability of z is given by pg(x) = HiL:1 po(x;i|T<i), with pg(z1]0) =
pe(x1). In traditional supervised learning, for a sample (x, y) ~ D, the conditional likelihood of the
. . . L . . .
output y given input x is pg(y|z) = [[;_; po(vilz, y<i), with pe(y1|0) = pe(y1); and in supervised
fine-tuning (SFT) of LLMs, this manifests as minimising the negative log-likelihood (NLL) of y
given x.

In instruction tuning (IT) (Zhang et al., 2023)), a form of SFT, an additional task instruction I ac-
companies the input-output pair (x, y), forming a tuple (1, z, y). The objective becomes minimising
the NLL of y given both I and z, i.e., po (y|I, x).
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Focus Instruction Tuning (FIT). We introduce Focus Instruction Tuning (FIT), a specialised form
of instruction tuning that trains LLMs to adjust their responses based on user-specified features
provided in natural language.

Let F denote the set of possible features (e.g., specific keywords, sentiment, verb tense, demographic
information, etc.) that the model can be instructed to focus on or ignore when generating responses.
We consider a set of natural language instructions to focus or rule out specified features in F which
we term the focus instruction set Ifocusﬂ Explicitly, we define Zgycys as

Ttocus = {0, , , focus(F;) Aignore(F;) | F;, Fj € F}, )]
where: () denotes an empty focus instruction with no features to focus on or to ignore; isan
; is an ; and focus(F;) A

ignore( ;) is an instruction to focus on feature /; whilst ignoring feature ;. We include the default
prompt in order to aid the model in learning the underlying task as well as the ability to refocus its
attention on specified features during FIT.

Consider a sample (z,y) ~ Pgaa(z,y) drawn from an underlying data distribution and
a focus instruction Ifous drawn from a distribution pz, . over the set of focus instruc-
tions  Zgocus- Then the likelihood of response y conditioned on input x, task instruc-
tion I (as in standard IT), and focus-instruction If,ys is modelled as po(y|1, Irocus, X)-

FIT Training. Consider a clas-
sification task®| with finite label
space ), where a single causal
feature C' € F is fully predic-
tive of label y € ) given input

Instruction: You are a helpful assistant. Answer the question below. (I) ]

Context: | watched an old man talking to a much more youthful man the other day in the park. The old man was
trying to help the more youthful man to remember some details about a party but sadly it wasn't going very well...

Question: Who has trouble remembering things? (a) The old man; (b) The more youthful man; (c) Cannot answer.

2 at both training time and un- 7/ ) ) ‘ )
N . 3 . - focus(C): Focus on answering question from ok (S): F

der distribution shift (Koh'etal} | context alone oeusio)Foeus enage.

2021). We also consider spu- - ignore(S): lgnore age. e ) Dot foous an answering the

rious features S € S g F ch(ZZeen) - focus(C) A ignore(S): Focus on answering
from a Subset Of SpuriOMS fea' question from the context alone, ignore age.
tures S, where feature valuesﬂ J
s € Image(S) for some spuri- ’nyT‘ ’ (b) The more youthful man. (Y ) d ’ (a) The old man. (Y ) é
ous feature S € S correlate with
alabel y, € Y, where this corre-
lation may change under distri-
bution shift (Ming et al.| [2022).
Finally, we define F as the set of
features that may be included in focus instructions during training, consisting of the causal feature
and the set of spurious features F = {C} U S.

-focus(S) A ignore(C): Focus on age, don't
answer the question based on the context alone.

Figure 2: Example of focus labels. Focus labels for a modified
example from BBQ. Here, age is a spurious feature.

For a sample (z,y) ~ paaa(z,y), we specify the focus label Ysocus = Ytocus (T, Y, Tocus) € Y that
depends on the ground truth label y and focus instruction Igoeys € Zgocus- Intuitively, we define focus
label yrocus @S Yrocus = Yy When either no focus features are specified (i.e., using the empty focus
instruction), when the focus is on the underlying causal feature C', or when ignoring a spurious
feature .S; but when either the focus is on a spurious feature or the causal feature is ignored, ysocus
is defined as the label spuriously correlated with a particular value of the spurious feature present
in input . This changing target ysocus trains the model to learn to adjust its responses based on
specified features. Formally, we define ocys as:

y  if Trocus € {0, focus(C), focus(C) A ignore(S),ignore(S) | S € S};
Yrocus = § Ys  if Trocus € {focus(S), focus(S) Aignore(F}) | Fj € F\ {S}}, fors € z; )
ys if Tgocus € {ignore(C')} for sampled feature S € S with value s € x.

"Examples of focus instructions specified in natural language include: “Make sentiment the central factor in
your decision” and “Base your prediction solely on the presence of keywords. Exclude the logical relationship
between the premise and hypothesis”.

2For simplicity, we focus on classification here; but FIT is also applicable to generative tasks, as we show
in our question-answering experiments.

3 .

Note that we use uppercase to denote features, and lowercase to denote specific values of features.
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where we again use s € x to denote the presence of the feature value s in input . See Figure 2]
for a concrete example showing the focus label values for an example from the MNLI dataset under
different focus instructions.

The objective of FIT training is to minimise the negative log-likelihood (NLL) of the response ¥ocus
conditioned on I, It,cys, . Formally, we define the FT loss objective as:

Hlf)in]E(w;y)diam(w:y)a Ifocus”‘/plfccus (Ifocm) [_ log Do (yfocus ‘ I7 Ifocus’ Qf)] : (3)

We define pz, . (Ztocus) by placing a small probability mass on the empty focus instruction prompt
() in order to aid in learning the underlying task, and then uniformly distribute the remaining prob-
ability mass over the remaining non-empty feature instructions. The objective in Equation can
be optimised through sampling using stochastic gradient descent (SGD) with popular optimisers
such as AdamW (Loshchilov & Hutter] [2019). Further details on FT optimisation are provided in

Appendix

Evaluating FIT under spurious correlations. After introducing FIT above, we now turn to settings
where we can empirically train and evaluate it. A key aspect of our evaluation is the use of known
spurious correlations, which simulate real-world scenarios where models can be misled by features
that are spuriously predictive of the output label. By adjusting the co-occurrence rate between
spurious features and their associated labels, we can test FIT’s ability to dynamically steer a model’s
responses depending on the features on which it is focusing or ignoring.

We define the co-ocurrence rate, or predictivity (Hermann et al., [2024), between spurious feature
values and the label with which they are spuriously correlated by pspurious- Specifically:

Definition 1. (Defining pspurious). Let S € S C F denote a spurious feature. Suppose that a value
of S, say s, is spuriously correlated with label y,. Then we define pspurious(s) as

pspurious(s) = ]P(Y = yS|X7 S = s,8 € X) (4)
Sfor some dataset sample (x,y) € D, where S € X denotes the presence of feature S in example X.

By varying ppurious (5), We can control the predictivity of spurious features and observe the model’s
behaviour when focusing on or ignoring these features as well as causal features.

Given a task with NV classes, we require pspurious = 1 /N within the training set, ensuring that the
underlying label distribution, p(y|I, Itocus, ), is of maximum entropy when focusing on spurious
features. This allows the model to better distinguish between causal and spurious features, as effec-
tively minimising Equation (3) would require the model to make predictions without relying on the
underlying causal feature when its attention is specified to focus on on spurious features. A more
detailed exploration of this setting of pgpurious during training can be found in Appendix E}

Next, we evaluate FIT across several test sets that capture different conditions of spurious correla-
tions and distribution shifts:

* Diiq: Held-out test samples with the same pgpurious as in the training set.

* Dhigh: Test samples with a higher pgpurious than in the training set.

* Diow: Test samples with a lower pspurious than in the training set.

* Diipped: Test samples where spurious feature values are flipped to co-occur with different
labels than in the training set, with the same high pspurious as in Dhgh.

We further evaluate FIT under distribution shifts, where the specific values taken by spurious features
do not overlap between the training and test sets, by introducing one additional test set:

. Dshif[(pspurious): Test datasets where the spurious feature values are distinct from those
within the training set.

We evaluate over these datasets specifically on our SMNLI datset (c.f. Section[d.2).

4 EXPERIMENTS

In this section we empirically validate the effectiveness of FIT across a range of popular LLMs
of varying sizes and on different NLP datasets, including classification and multi-choice question-
answering tasks.
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Before reporting the main results, we introduce the evaluation metric (focus accuracy) that we re-
port, baselines, models, and training settings used throughout the experiments. In Section we
first verify that FIT performs well on the simpler SS dataset, a synthetic sentiment analysis dataset
derived from SST-5 (Socher et al.,[2013b). We then demonstrate in Section @] that FIT generalises
to more complex features and handles distribution shifts on the SMNLI dataset, a sub-sampled ver-
sion of the MNLI dataset (Williams et al., 2018). Finally, in Section @ we show that FIT has
practical, real-world impact by effectively mitigating bias in the BBQ dataset (Parrish et al.| 2022)),
where we further illustrate FIT’s ability to generalise to new features seen for the first time when
performing inference.

Metrics. We define the focus accuracy for a focus instruction Iocys € Zgocus as the proportion of
samples where the model’s prediction aligns with the focus label, yrocus, as specified in Equation (2)).
Specifically, for each sample (z,y) € D, the model produces a prediction § ~ pg(y | I, Itocus, )
based on a fixed focus instruction Itocus € Zgocus- The focus label, Yrocus = Yrocus (€, Y5 Trocus)» COI-
responds to the target output given the focus instruction for the input 2 with ground truth label y.
Focus accuracy for focus instruction Ifocys, denoted Agoeus(Zfocus ), 1S computed as the fraction of
correct predictions with respect to the focus label:

1
D

where 1(§ = Yocus) 18 the indicator function that equals 1 if the model’s prediction § matches the
focus label y¢ocys, and O otherwise.

Afocus (Ifncus) = Z 1(3:/ = yfocus); (5)

(z,y)€D

We report focus accuracy for each model on all dataset splits, using the prompt types and focus
instructions detailed in Appendix [A.3] Generations are evaluated through simple pattern matching
due to the use of constrained beam decoding. Further details are provided in Appendix

Models and training settings. We evaluate FIT using three popular LLMs that
span a range of model sizes: Llama—-3.1-8B-Instruct (Dubey et al) [2024),
Mistral-7B-Instruct-v0.3 (Jiang et al.,2023), and Vicuna-13B-v1.5 (Chiang et al.,
2023). The models are fine-tuned using parameter-efficient SFT with LoRA (Hu et al.| [2021)), lever-
aging Hugging Face’s SFTTrainer (Wolf et al.,[2020) with default hyperparameters. Early stop-
ping is applied based on validation loss, as defined in Equation (3). For generation, we use con-
strained beam decoding (Anderson et al. 2017) and use fully verbalised (natural language) labels
during both training and testing, except for the multi-choice BBQ dataset. For further training de-
tails, refer to Appendix

Baselines. We compare against in the main section of the paper: a few-shot baseline (Manikandan
et al.;[2023)) and a SFT baseline. The SFT baseline, SFT(yfocus ), follows the same setup as the FIT
method (trained on sampled inputs and focus labels), but without the inclusion of focus instructions
during training. This ensures a fair comparison between FIT and the baseline, as both methods are
trained on the same examples and labels (i.e., focus labels yfocus), With the only difference being
the inclusion of focus instructions in FIT. This setup allows us to isolate and evaluate the specific
impact of incorporating focus instructions in FIT. The few-shot baseline involves using 5 in-context
examples uniformly sampled at random from the training set for each test example, where we use
the same focus instruction for each in-context sample as for the test sample. In Appendix [A.5] we
include two additional baselines: zero-shot and vanilla SFT for a more complete comparison with
FIT. Further details of baselines can be found in Appendix

4.1 VALIDATION OF FIT ON THE SS DATASET

Spurious Sentiment dataset (SS). We first evaluate FIT on a synthetic binary sentiment analysis
dataset. Starting with SST-5 (Socher et al., 2013a), a 5-class sentiment analysis dataset, we use
Llama-3.1-70B-Instruct (Dubey et al|[2024) to inject the spurious keywords Pineapple
and Bayesian into all dataset examples in a natural wayE] In this process, we preserve the original
sentiment of the dataset examples and combine categories of positive and negative labels into single

“We observe that the LLM makes minimal changes to each input, sometimes only inserting the keyword
where appropriate, and in other cases only adding a few words to create a more appropriate context (e.g.,
prepending “According to our Bayesian analysis,” to a declarative clause). See Appendixfor further details.
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Figure 3: SS focus accuracies (1). Focus accuracy (Asocys) of models after SFT and FIT on the SS
dataset. Here, C refers to the causal feature (sentiment) and S' the spurious feature (presence of one
of the keywords of “Bayesian” and “Pineapple”).

classes, and exclude examples with neutral labels from our augmented dataset. The feature set
is given as F = {sentiment, presence of keywords [ “Bayesian”, “Pineapple”]}. We inject these
features so that the presence of “Pineapple” and “Bayesian” are spuriously correlated with negative
and positive sentiment, respectively. The degree of co-occurrence is governed by pspurious, Which
varies according to the test sets described in Section E} We ensure that pgpurious i the same for all
feature values within each dataset split. In particular, we set pPgpurious to be 0.5,0.5,0.9,0.25 and 0.9
on Digzin, Diid> Dhigh» Diow and Diipped respectively. Further details of the SS dataset can be found in
Appendix [A77]

Results. Figure [3] shows the focus accuracy results of the three LLMs on the SS dataset after
SFT and after FIT. We see that across all focus instructions and all models, FIT shows significant
improvement over the baselines, achieving very high focus accuracy.

Key takeaways. High focus accuracy on SS indicates that FIT training successfully allows
the model to alter its response by considering the feature on which it is instructed to focus
or not focus. This shows that the model’s behaviour can be effectively steered using FIT.

4.2 FIT PERFORMS WELL WITH MORE COMPLEX FEATURES ON THE SMNLI DATASET AND
GENERALISES UNDER DISTRIBUTION SHIFT

Spurious MNLI dataset (SMNLI). Next, we evaluate our method on a more complex dataset
with subtler features. Specifically, we construct an NLI dataset by sub-sampling from MNLI
(Williams et al., 2018)), where we induce a spurious correlation between text genres and labels by
sub-sampling accordingly. We refer to this dataset as SMNLI, where the feature set is defined as
F = {NLI relationship, genre}. The co-occurrence rate of genres and their spuriously associated
label is governed by pgpurious, Which varies across the test sets discussed in Section@ We ensure that
Pspurious 18 the same for all feature values within each dataset split. In particular, we set pspurious t0 be
1/3,1/3,0.9,0.1 and 0.9 on Dyin, Diids Dhigh» Diow and Dhipped respectively.

Moreover, for SMNLI, we hold out specific genres at test time to evaluate our model’s ability to
generalise under distribution shift when feature values change. We do this by sub-sampling a held-
out portion of the MNLI dataset. During training, we use three selected genres (government, fiction,
and travel) to evaluate our models. At test time, we add an additional three held-out genres (faceto-
face, nineeleven, and verbatim). We again ensure that pgurous is constant within each dataset split
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Figure 4: SMNLI focus accuracies (1). Focus accuracy (Agcys) of models after SFT and FIT on
the SMNLI dataset. Here, C refers to the causal feature (logical relationship between premise and
hypothesis) and S the spurious feature (genre of the underlying text)

for all feature values, and use the same set of corresponding pPgpurious @s Within the SMNLI test sets
described above. Further details of the SMNLI dataset can be found in Appendix [A.9] Results.
Figure ] depicts the focus accuracy results of the three models on the SMNLI test splits. We observe
that even for the more complex feature of genre, FIT achieves very high focus accuracy, signif-
icantly improving over the baselines. This demonstrates that FIT effectively trains the model to
handle more complex features, allowing it to dynamically focus on or disregard these features when
making predictions.

Figure [5] shows the focus accuracy of models on the distribution-shifted test sets across different
values of pspurious- When focusing on the causal feature or ignoring the spurious feature, the model
maintains strong performance in terms of focus accuracy, even on unseen genre values (over 80%
focus accuracy for FIT models on the second row of FigureEI). Note that, while we observe low focus
accuracy when focusing on spurious features, this is expected, as the spurious labels associated with
these new genres were not encountered during training. Thus when focusing on these features the
model does not know what label to predict. This result highlights that the focus-tuned models have
indeed learned spurious associations during training and correctly reproduces them when instructed
to focus on these spurious features, even for new spurious feature values. When instructed to focus
on the causal feature (or even just to ignore the spurious feature), the model still shows strong
generalisation in the presence of distribution shift.

Key takeaways. FIT achieves high focus accuracy on more complex features and maintains
strong performance under distribution shift in terms of feature values. This demonstrates
FIT’s ability to generalise to new contexts and reliably handle changing feature values, which
is crucial for ensuring consistent and robust model performance in dynamic settings.

4.3 FIT STEERS BEHAVIOUR IN THE PRESENCE OF SOCIAL BIAS DATA AND GENERALISES TO
UNSEEN FEATURES

Bias Benchmark for QA (BBQ) dataset. Finally, we experiment with BBQ |Parrish et al.|(2022), a
widely-utilised multiple-choice question-answering benchmark annotated with nine forms of so-
cial bias that are relevant to any given answer, such as stereotypes that would imply a given
answer to an otherwise ambiguous question (see Figure [T). The feature set contains F =
{question context, gender identity, race/ethnicity, ..., disability status}, which contains one causal
feature (question context) and 9 bias features. Of the n = 9 bias features, we focus-tune mod-
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Figure 5: SMNLI focus accuracies (1) under distribution shift . Focus accuracy (Agocys) of models
after SFT and FIT on SMNLLI, evaluated on distribution-shifted test sets with different feature values
(genres) from training. shift(pspurious) refers to test sets where feature values (genres) differ from
training with a co-occurrence rate of pgurious- Here, “flipped” indicates a change in spurious label
associations between training and testing, with high pspurious in the test set.

els with respect to 6, and test on these 6 features plus the remaining 3 bias features in order to
test how well FIT generalises to features that are not seen during focus tuning. Here, we consider
the spurious features to be the presence of a particular social group (e.g., men or women) in the
question context, and spurious answers to be those that would be indicated by relying on social
stereotypes rather than the specific question context (e.g., see Figure[I). The stereotyped response
used to determine spurious answers for these bias features are provided as part of the BBQ dataset.

Results. Figure[f]shows the focus accuracy results of the three models on the BBQ dataset, visualis-
ing performance on features seen during training and unseen, held-out features. The models demon-
strate high and comparable focus accuracy across both seen and unseen bias features, indicating that
FIT generalises well to unseen features, including nuanced reasoning about group stereotypes. This
highlights the usefulness of FIT in mitigating social biases in LLM responses. Specifically, FIT can
effectively learn, reason about, and rule out biases when formulating responses, making it a practical
tool for bias mitigation.

Key takeaways. FIT can effectively teach models to adjust their responses based on knowl-
edge of social biases. This ability generalises to biases not seen during FIT training, indicat-
ing FIT’s utility for bias mitigation.

5 ABLATION

Generalisation to different test-time prompt formats. As observed in the IT literature,
instruction-tuned models sometimes memorise instruction formats and struggle to follow para-
phrased instructions at test time (Ghosh et all, 2024). In Appendix [A.6] (Figure [8), we compare
the performance of models on the SMNLI dataset when using the same focus instructions at training
and test time versus using paraphrased instructions at test time. We generate 10 different test-time
focus instructions of each instruction type defined in Equation (T)) by paraphrasing the existing focus
instruction using ChatGPT (OpenAll 2022). The results show minimal variation in focus accuracy
across different dataset splits and focus features, even when testing on paraphrased prompts, indi-
cating that FIT indeed teaches models a general capacity to focus on or ignore features regardless of
the specific way that focus instructions are phrased.
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Figure 6: BBQ focus accuracies (1). Focus accuracy (Agyeys) of models after SFT and FIT on the
BBQ dataset. We include focus accuracy evaluated on bias features seen at training time (purple)
and on held-out bias features seen only at test time (green).

6 CONCLUSIONS

In this work, we introduce Focus Instruction Tuning (FIT), a method designed to steer the behaviour
of LLMs by focusing on or ignoring specific features when formulating responses. Across a range
of tasks and settings, we demonstrate that FIT can be used to steer LLM behaviours at inference
time, even in the context of distribution shifts over feature values or when generalizing to unseen
features at inference time. Additionally, we show that our method can mitigate biases by identifying
and factoring out known stereotypes that might otherwise influence responses. Thus, FIT represents
a step toward enabling more robust, fair, and controllable LLMs.

We recommend that future work explore the effectiveness of FIT across a broader variety of tasks,
including open-ended, free-form natural language generation tasks such as summarization or trans-
lation. Another promising direction is investigating whether FIT can generalise not only across
features but also across different categories of tasks (cf. FLAN; Longpre et al.|2023)).

ETHICAL CONSIDERATIONS AND LIMITATIONS

The ability to dynamically steer model behaviour by focusing on or ignoring features, as enabled by
FIT, holds significant potential for reducing algorithmic discrimination and mitigating harms. Prac-
titioners can leverage FIT to identify and correct biases by measuring discrepancies in behaviour
when a model focuses on or ignores specific features. Additionally, FIT enhances explainability by
attributing model predictions to input features, enabling more transparent and productive human-Al
collaboration. This supports ethical and responsible decision-making by assessing whether predic-
tions are justified. FIT also enhances robustness by prioritising stable causal features expected to
generalise across domains while ignoring spurious, domain-specific biases, making it a valuable tool
for fairness, explainability, and robustness.

However, risks include potential misuse by bad actors to bias models, though this is not unique to FIT
and could already be achieved through biased fine-tuning. Additionally, as noted in Appendix[A.10]
FIT may face challenges when addressing features that overlap heavily or lack distinctiveness. While
these constraints may arise in specific contexts, they do not diminish FIT’s broader applicability
across natural-language tasks.
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A APPENDIX

A.1 FT TRAINING AND OPTIMISATION SETTINGS
FT Optimisation. Algorithm|gives precise details on how we implement FIT in practice when per-

forming SFT of a model on a given training set. In particular, it shows how we approach optimising
the FIT training objective given in Equation (3).
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Algorithm 1 Algorithm for Focus Instruction Tuning (FIT) Training Procedure to Optimise Equa-
tion (3).

1: Input: Dataset D = {(x;,y;)}Y,, The feature set contains JF, instruction I, model pa-
rameters 6, batch size B, number of epochs F, step size 7, and mapping function ypeus =
Yfocus (.T, Y, Ifocus)-

2: Initialise: Model parameters 6, optimiser

3: for epoch = 1to E do

4:  for mini-batch {(x%,y*)}£_, from D do

5: for each (2, ") in the mini-batch do
6: Sample focus instruction 12, ~ pz,.... (Zrocus)
7: Compute ytbncus = nyCUS(xb7 yb’ Iflz)cus)
8: end for
9: Compute average loss given through empirical estimator of the loss defined in Equation
over the batch:
1B
b b b
L(G) = E Z - 10gp9 (yfocus|I7 Ifocus? z )
b=1
10: Update model parameters 6 using optimiser:
0+ 0 —nVoeL(0)
11:  end for
12: end for

13: Output: Optimised model parameters

FT training settings. We use the SFTTrainer class from HuggingFace (Wolf et al.l|[2020) and use
all of the default training settings for performing SFT of LLMs. Furthermore, we define p(Zocus)
by placing a small probability (in our experiments, 0.05) on the empty focus instruction (). We then
uniformly distribute the remaining probability mass over the non-empty focus instructions.

We implement early stopping on a held-out validation set based on the cross-entropy loss over focus
labels yfocys corresponding to randomly sampled focus instructions - this matches the context in
which the models will be evaluated. We obtain this set by splitting our training set in an 80/20% for
training and validation. We use a patience of 4 validation evaluation steps, which occur after a fixed
number of steps.

We use LoRA (Hu et al., 2021)) for parameter-efficient fine-tuning. We target the query and value
projection matrices within each LLM and use LoRA r = 16 and a = 32 across models.

Choice of pspurious during training. Consider a classification problem with N classes so that |Y| =
6. During FIT training we want the model to learn to change it’s behaviour depending on which
features are specified to be focused on or ignored.

To achieve this, consider when the focus instruction requires that the model focus on a spurious
feature during training, which means that Iro.ys € {focus(S), focus(S) A ignore(F}) | F; € F \
{S}}, we choose pspurious = 1/N. The definition of pgpurious given in Equation (E]) implies that in this
setting Pspurions = P(Y = ys| X, I, Jrocus, s € X) for a feature value s of spurious feature S in input
X. Therefore, setting pspurious = 1/IN for the training dataset induces a uniform distribution over the
set the set of class labels conditioned on an input X and focus instruction Ioeys during training.
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The entropy of this discrete distribution is then given by:

HPY = 4ol X, T Iious, 5 € X)) = (©
= Eyb(v =y, X1, T, 56 X) [T 108P(Y = 4 [ X, 1, Trocus, s € X)) @
= — Z IP(Y = ys|X7]7]focus; s E X) IOgP(Y = yS|X’ I’ IfOC“’s € X) (8)

yeY

1)\ 1

yey
=-—1lo i (10)
=log N. (n

It is well known that discrete uniform distributions have maximum entropy (Bishop & Nasrabadi,
2000).

Practically, this means that the causal feature is not predictive of the focus label, which is what we are
training the model to predict. A lower-entropy distribution (compared to the uniform distribution)
during training would result in a higher co-occurrence of the spurious labels with the underlying
causal labels. This could lead the model to rely on the underlying task-causal feature to solve the
task, rat her than learning to adapt its behaviour when focusing on a non-causal feature. Therefore,
using the maximum-entropy uniform distribution during training better enables the model to learn
to adjust its behaviour based on the specified features. This ensures that the model does not fall back
on causal features when spurious ones are the focus, thus improving the steerability of the model.

A.2 EVALUATION METRICS

Generation settings. We generate responses from our FT model using constrained beam-decoding
(Anderson et al.,2017) with 8 beams. This ensures that the answer labels for each classification task
that we investigate appear in the model’s output. We limit the maximum number of newly generated
tokens to be 5 to stop any unnecessary text given after the model’s initial classification prediction.

Computing the focus accuracy metric. We report the accuracy of generations when evaluating
FT models. As we are guaranteed to include the task labels within the model’s response through
constrained decoding, we simply check to see if the focus label, yfocus, 1S Within the model’s response
or not in order to determine if the model’s response is correct.

A.3 FIT Focus INSTRUCTIONS AND PROMPT TEMPLATES

Focus instructions. We consider the following focus instruction formats for the different focus
instructions introduced in Equation (1) which are used for FIT training and evaluation:
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Focus instructions Zgyeys

For features F;, F; € F:

Focus instructions focus(F;):
 Direct your attention solely to F;.
¢ Concentrate all your reasoning on F;.
* Make F; the central factor in your decision.
* Base your judgment exclusively on F}.
* Pay attention only to F; when making your prediction.
e Use F; as the key input for your evaluation.
¢ Focus entirely on F; and ignore other aspects.
* Rely exclusively on F; to reach your conclusion.
» Consider only F; and disregard all else.

* Let F; be the primary basis for your decision.

Ignore instructions ignore( F; ):
» Completely rule out F; from your reasoning.
¢ Disregard any influence of F7; in your prediction.
e Treat F; as irrelevant to your decision-making process.
* Exclude F; entirely from your evaluation.
* Do not let F; play any role in your assessment.
* Intervene to prevent F; from affecting your prediction.
¢ Ensure that F; has no bearing on your final decision.
¢ Block F}; from contributing to your reasoning.
* Negate the impact of F}; in your prediction.

* Ruling out F; is crucial—do not let it affect your decision.

Focus and Ignore instructions focus(F;) A ignore(F;)
* Focus specifically on F;. Disregard F'; in your decision-making process.
* Base your prediction solely on F};. Exclude F;.
* Direct all your attention to F;. Block out F; from your prediction.

* Consider only F} in your reasoning. Rule out F; in your decision-making.

Prioritize F;. Completely ignore F’; in your prediction.

* Do not consider F'; in your decision-making process. Focus exclusively on F;.
* Ignore any influence of F’;. Concentrate on F in your prediction.

* Disregard F; entirely. Base your analysis solely on F;.

* Rule out F; in your prediction. Shift your focus to F;.

* Do not pay attention to F; in your decision-making process. Rely only on F;.

Prompt template for SS. We consider the following prompt templates for the SS dataset:

SS Focus instruction prompt templates Zgocus

<INSTRUCTION>

You are a language model performing sentiment analysis on a binary dataset, making predictions from the labels [negative,
positive]. Make your prediction based on the relevant features described below, focusing on the specified features and ignoring
those deemed irrelevant. For the input below, output either negative or positive ONLY for your prediction of the input’s label.
<END OF INSTRUCTION>

<FEATURE CONSIDERATIONS>
{focus instruction - Tfocus }

<END FEATURE CONSIDERATIONS>
### Input: {input}

### Output:

.

where for the instruction with no focus instruction, (), we simply drop the feature considerations
section and focus instruction from the prompt.
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Prompt template for SMINLI. We consider the following prompt templates for the SMNLI dataset.

NLI focus instruction prompt template Z¢,cus

<INSTRUCTION>

You are a language model performing natural language inference (NLI) on a dataset with three labels [entailment, neutral,
contradiction]. For the inputs consisting of premise and hypothesis below, make your prediction based on the relevant features
described, focusing on the specified features and ignoring those deemed irrelevant. Output either entailment, neutral, or
contradiction ONLY for your prediction of the input’s label.

<END OF INSTRUCTION>

<FEATURE CONSIDERATIONS>
{focus instruction - Tgocus }
<END FEATURE CONSIDERATIONS>

### Premise: {premise}
### Hypothesis: {hypothesis}

### Output:

where we again drop the feature considerations section and focus instruction from the prompt to
form the instruction prompt () with no focus instruction.

BBQ focus instruction prompt template Zg,.,s We consider the following prompt templates for the
BBQ dataset.

BBQ focus instruction prompt template Zgoeys

<INSTRUCTION>

You are a language model answering a QUESTION based on a provided CONTEXT, choosing to ANSWER with one of three
options: 1, 2, or 3. Each option corresponds to an answer from the provided ANSWER OPTIONS. You must output EXACTLY
one of these numbers (1, 2, or 3) representing the answer you select.

<END OF INSTRUCTION>

<FEATURE CONSIDERATIONS>
{focus instruction - Tfocus }

<END FEATURE CONSIDERATIONS>
### CONTEXT: {context}

### QUESTION: {question}

### ANSWER OPTIONS:

(1) {ans0}

(2) {ans1}

(3) {ans2}

### ANSWER:

where we again drop the feature considerations to get the template for the focus instruction (.

A.4 BASELINES

We include results for the following two baselines to fruther supplement the results presented in the
main section of the paper.

SFT(ygocus) baseline. We implement an SFT baseline that follows the same training procedure as
FIT, except during training, we exclude any focus instructions from the input prompts while still
training on the focus labels. This provides a fair comparison with FIT, as the models are trained on
the same input text and label pairs. The rest of the training setup, including hyperparameters and
early stopping, remains identical to the FIT training setup.The model is tested on the full set of focus
instructions prompts detailed in Equation ().

Few-shot baseline. This second baseline compares FIT training to few-shot inference using the
original pre-trained models without additional fine-tuning on our spurious datasets. Specifically, we
use 5 in-context examples across all datasets. For the in-context examples, we concatenate multiple
examples one after the other, including the instructional prompt only for the first in-context example
and the final test example. Each in-context example contains the same focus instruction as the test
example for which they serve as context. The model is tested on the full set of focus instructions
prompts detailed in Equation (TJ).
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For completeness, we report two additional baselines: vanilla SFT and zero-shot baselines.

SFT(y) baseline. We implement a vanilla SFT baseline that simply trains a model using SFT on
inputs and their ground truth labels (as opposed to focus labels in the SFT(yg,cys) baseline). During
training, only standard IT prompts are used, with no additional focus instructions included. The
rest of the training setup, including hyperparameters and early stopping, remains identical to the
FIT training setup. The model is tested on the full set of focus instructions prompts detailed in
Equation (TJ).

Zero-shot baseline. Finally, we include a zero-shot inference baseline using the original pre-trained
models without additional fine-tuning on our spurious datasets. No in-context examples are used at
inference time, and the model is not trained at all beyond it’s pre-training. The model is tested on
the full set of focus instructions prompts detailed in Equation (T).

A.5 ADDITIONAL BASELINES RESULTS

In this section, we include the two additional baselines -SFT(y) and zero-shot - on the SMNLI
dataset to further supplement the results in Section[4.2}

Mistral LLaMA Vicuna

Zero-shot

focus(S) L focus(C) A ocus(C) A
dont-focus(S) nt-focus(S)

focus(S)
dont-focus(

SFT(y)

dont-focus(S) dont-focus(S) dont-focus(S)

‘-.- Diid =@= Dhigh =8= Dioy == Dﬂippcd‘

Figure 7: Focus accuracy (1) for zero-shot and SFT(y) on SMNLI. Figure giving focus accuracies
(Afsocus) of the additional zero-shot and SFT(y) baselines on the SMNLI dataset.

A.6 SMNLI ABLATION OF TRAINING AND TEST TIME FOCUS INSTRUCTION REPHRASING
DIFFERENCES

We analyse the impact of using the same versus different sets of focus instructions at training and
test time when applying FIT models. Specifically, we generate alternative test set focus instructions
by paraphrasing the training focus instructions, as shown in Appendix[A.3] using ChatGPT.

As depicted in Figure[8] the results of this ablation reveal negligible differences between using the
same or different focus instruction phrasings during training and testing. This indicates that FIT
effectively trains the model to focus on or ignore features, regardless of how the instructions are
phrased.

A.7 SPURIOUS SENTIMENT (SS) DATASET

We take a pre-existing dataset, in this case SST-5 (Socher et al., 2013a), and modify it in order to
induce a known spurious feature and create a spurious binary sentiment analysis dataset.

Data-generating process (DGP). We frame our DGP using a graphical model to describe the syn-
thetic dataset that we create. We follow a similar model to that described in (Arjovsky et al.,|2019),
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Figure 8: Focus accuracy (1) for different training and test focus instruction sets. Figure com-
paring focus accuracies (Agocus) Of sampling from the same (left) and different (right) sets of focus

instructions at training and test time of models on the SMNLI dataset.

Figure 9: SS DGP. Graphical model showing the data generating process for modifying examples

from the SST-5 dataset to introduce a new spurious keyword feature S.

specifically the model used for generating their coloured MNIST dataset. We use the following

variables within our graphical model:

» (' - true underlying sentiment, the causal feature within this task, sampled from the original

dataset.

* S - spurious feature, here this is the presence of the keywords Bayesian or Pineapple. We
represent this as a binary vector S € {0, 1}2, where the first and second components of this

vector denote the presence of either the keyword Pineapple or Bayesian respectively.

* X -is a sampled example from the original dataset that we are modifying to inject known

spurious correlations.

« X - original example X but augmented to include the spurious feature.

¢ Y - final label for element X.

The graphical model describing the DGP of the SS dataset is given in Figure 0] This admits a

functional representation in the form:

C = fc(Uc);
X = f(C,Ug);
S = fs(C,Us);
X =

Y = fy(C,Uy).

21
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where U,y are variables introducing sources of randomness into the generating process. More ex-
plicitly, we consider the following set of equations, where D denotes the underlying dataset that we
are manipulating:

C ~ Ber(pc), where pc = pc(D); (17
X ~pp(C), (18)
S =(1c=0,1c=1); 19)
Uincid. ~ Ber (pincid. ); (20)
UX ~ Ber(pspurious); (21)
_ fUxLIM(X,S) + (1 - Ux)LIM(X, 1~ 8) if Uipea =1
r= {X if Upeg. = 0 22
Y =c, 23)

The variable pc gives the distribution of sentiment labels in the original binarised SST-5 dataset.
Moreover, pp(-|C) denotes the conditional dataset distribution of the different input texts give C
(here we assume that we are just uniformly sampling text with the given sentiment C) and 1.
denotes the indicator function. In addition, pi,. gives the proportion of spurious features that are
included within original dataset examples. This corresponds to proportion of examples within the
original dataset that are modified by the above process and therefore contain spurious feature values.

Finally, we prove that pspuious gives the concurrence rate between the label Y and the spurious feature
values of S. The proof rests on the fact that Ux, which gives whether a spurious feature value s is
injected into X or whether the other value 1—s is injected instead, controls the cooccurrence between

Y and the spurious feature value s. In particular, we note that P(Y =y, Ux = 1, X # X|X,S = s)
gives the co-occurrence rate between the label y and spurious feature s in the dataset (assuming that
if the feature is only present within the dataset through the inclusion of the feature and not within
the original dataset examples).

Proposition 1. From the DGP described in Figure[9) we have that
]P(Y = 17 UX = 1, X 7é X|X, S = (0, 1)) = Pincdl. * Pspurious; (24)
P(Y = 07 UX = 17 X 7é X|X7 S = (L 0)) = Pincdl. * Pspurious- (25)

Proof. Using the chain rule of probability, we see that

P(Y =1,Ux =1,X # X|X,S = (0,1)) = (26)
=P(Y =1Ux =1,X,X #X,5=(0,1))P(Ux =1,X # X|X,5 = (0,1)) (27)
=P(Y =1|S=(0,1))P(Ux =1,X # X|X,5 = (0,1)) (28)
=P(Y =1|S = (0,1))P(Ux = 1| X, X # X,S = (0,1))P(X # X|X,S = (0,1)) (29)
=P(Y =1|S = (0,1))P(Ux = 1)P(X # X|X) (30)
=P(Y =1|C =1)P(Ux = 1)P(Uipeta. = 1) 3D
= 1" Pincdl. * Pspurious (32)
= Pincdl. * Pspurious; (33)

where we have used that S and C' share a deterministic relationship and have used the conditional
independencies specified within the graphical model depicted in Figure 0] and through the noise
terms U,y in the SCEs introduced above. O

With pincg. = 1, we have that, indeed, the co-occurrence rate between the presence of spurious
feature values and the labels Y is given by pspurious-

We now connect this to predicitvity which is defined Equation (4)) in order to justify the notation that
we are using within the SCEs above.

Corollary 1. From the DGP described in Figure we have that
P(Y: 1‘)2,»9: (0,1),UX = 17X¢X) = Pspurious; (34)
]P(YZO‘XaS: <1ao)aUX =1,X #X) = Pspurious - (35)
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Figure 10: SS SCM. SCM showing showing the spurious correlation present between the keyword
feature S’ and the label Y of examples within the SS dataset, induced through the described data
augmentation process.

These events correspond to the events given in Equation (4)) that define pspurious(s) generally. There-
fore, the notation of purious in Equation (Fl_f[) is justified.

Proof. Using Proposition[T]and the definition of conditional probability, we get that

P(Y=1|X,5=(0,1)Ux =1,X # X) (36)
:P(Y:1,UX:1,X~¢X:|X,S:(o,l)) 37)

PUx =1,X # X | X,5=(0,1))
_ P(Y =1,Ux :17X7£2~(|X,S:~(0~,1)) 38)

P(Ux =1]X,5=(0,1),X # X)P(X # X|X,S=(0,1))

7IP’(Y:LUX:1,X7ég~(|~)~(,5:(0,1)) (39)

P(Ux = 1)P(X # X|X,Ux = 1)
_ Picld. * Pspurious (40)

Picia. - 1

= Pspurious (41)

where we have used the independencies specified within the DGP in Figure [T1] and the noise term
U, within the functional description of this DGP. O

SCM from this DGP. Through the above data generation process, we introduce a new spurious
feature within the dataset S, the presence of the keywords Bayesian and Pineapple. Recalling that
S = (1,0) and S = (0,1) correspond to insertion of the keywords Pineapple and Bayesian re-
spectively, we introduce the following spurious correlations between feature values of S and label
Y:

1. The presence of the word Pineapple in the text X is spuriously correlated the label 0 (neg-
ative sentiment).

2. The presence of the word Bayesian in the text X is spuriously correlated with the label 1
(positive sentiment).

The sentiment feature still remains causal within the augmented SS dataset, fully predicting the label
Y for each dataset example.

The above DGP, through the introduction of spurious feature .S, induces a SCM that describes the
spurious correlation between spurious feature S and the label Y. The SCM, shown in Figure
follows the style-content decomposition described in (Kaddour et al.|[2022)), where U is some hidden
confounding variable.

Data generation methodology. We use L1ama-3.1-70B-Instruct to generate modifications
X of original dataset examples X to create new text which include the new keywords feature. The
prompt we use for generation when modifying examples to include spurious features is give as:
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Figure 11: SMNLI DGP. Graphical model showing the data generating process for modifying
examples from the MNLI dataset to introduce a new spurious keyword feature S.

Data augmentation prompt

You are a language model designed to modify a piece of text to include an additional feature in a simple, natural way while keeping
your output as similar as possible to the original text.
Features
* pineapple: Include the word ‘pineapple’.
¢ Bayesian: Include the word ‘Bayesian’.
Instructions
* Ensure the output is grammatically correct.
* Keep the output as similar as possible to the original text.
* Make the minimal number of modifications and add the fewest new tokens possible to satisfy the chosen feature.
* Do not change the sentiment of the original text.
¢ Do not significantly alter the length of the output.
* Incorporate the feature naturally within the original text so that it blends seamlessly with the text’s context.
* Do not only append additional clauses at the end of the text to include the feature.
* Inclusions should be case sensitive, e.g., include ‘Bayesian” BUT NOT ‘bayesian’.
Output
¢ Only return the modified text, with no additional explanations or reasoning.

¢ Should strictly follow the feature description and the set of instructions.

Only include the one feature given; the other features SHOULD NOT be included even accidentally.

A.8 SPURIOUS NLI DATASET (SMNLI)

We generate a tertiary NLI dataset, SMNLI, with a known spurious feature. We do this considering
the MNLI dataset [Williams et al.| (2018). This is a NLI dataset with three labels: entailment (0),
neutral (1) and contradiction (2), where data is sampled from 5 underlying categories or genres
(telephone, government, travel, fiction or slate). We aim to induce spurious correlations between the
underlying genres and labels.

Data-generating process (DGP). We consider a graphical model to describe the DGP of examples
within the SMNLI dataset. We use the following variables within our DGP:

C - NLI relationship between a premise and hypothesis pair, the causal feature within this
task, sampled from the original dataset.

* S - spurious feature, here this is the genre of the premise and hypothesis. This is a categor-
ical variable.

e X - example from the MNLI dataset.

Y - final label for element X.
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Figure 12: SMNLI SCM. SCM showing showing the spurious correlation present between the
keyword feature .S and the label Y of examples within the SMNLI dataset, induced through the
described sub-sampling process of the MNLI dataset.

The graphical model described by the DGP for producing the SMNLI dataset is given in Figure[TT]
Once again, this graphical model can be represented functionally as:

S = fs(Us); (42)
C = fc(S,Uc); (43)
X = fx(C,E,Ux); (44)
Y = fy(C,Uy). (45)

More specifically, given the orignal dataset D that we are sub-sampling from, the functions that we
use within the DGP for the SMNLI dataset are given by:

S ~ cat(S), (46)
Uc ~ Ber(pspurious); “47)
C~ {Z(S)U(C \ é’(S)) 1; gg z (1): where C = {0, 1, 2} is the entailment label set; (48)
Yy = 8. (50)

Here, Cat(S) is a uniform categorical distribution over spurious feature values (here the underlying

genre of the premise-hypothesis pairs). Furthermore, we define C (S) to be the entailment label that a
particular value of S is spuriously correlated with by design. Moreover, pp(-|C, S) is the conditional
distribution over the dataset examples (premise-hypothesis pairs) that have NLI relationship C' and
genre S.

We restrict the genres within the model to S € {slate, government, fiction, travel}, a subset of the
genres of the training set. When creating a distribution shifted test set, we restrict the genres to
S € {facetoface, nineeleven, verbatim}. The specific spurious correlations between genres and
labels Y are chosen to be:

C(slate) =

C (government) 2;
C(fiction) = 1;
C(travel) = 0;

C(facetoface) = 2;

C(nineeleven) = 0;

NS kR =

C(verbatim) = 1.

In this way we generate spurious correlations within the dataset through sub-sampling to induce spu-
rious correlations between S and Y. In this case, for a dataset example X, the spurious correlation
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Figure 13: SHANS DGP. Graphical model showing the data generating process for modifying
examples from the SHANS dataset to introduce a new spurious features Siex., Ssub, and Seops, Which
are encoded within the categorical spurious feature S which represents one of these three heuristics.

between S = s and C'(s) is given as
P(Y = C(s)|X,S = 5,5 € X) = ppurious- (51)
This follows immediately form the sub-sampling process described above. This then once again

aligns with the definition of pgpurious in Equation (E]) and justifies the choice of notion in the above
generative process.

SCM for SMNLI. The DGP again induces a SCM that induces spurious correlations between spu-
rious features S and the label Y. The SCM has the same structure as in the SS dataset, and is given
in Figure [[4| where once again, U again is some hidden confounding variable.

A.9 SpPURIOUS HANS DATASET (SHANS)

We generate a binary NLI dataset, SHANS, with a known spurious feature. We do this considering
the HANS dataset [McCoy| (2019). This is an NLI data set with two labels: entailment (0) and
contradiction (1). This is an adversarial dataset designed to assess different NLI models’ reliance on
spurious heuristics rather than on the underlying relationship between the premise and the hypothesis
when making predictions. Specifically, the author’s consider three major categories of heuristics:
lexical overlap heuristic (assuming that a premise entails from words within the hypothesis) , sub-
sequence heuristic( assuming that the premise entails all any of its contiguous sub-sequences of
words) and constituent heuristic (assuming that a premise entails a hypothesis that is any constituent
within it’s syntactic parse tree).

Data-generating process (DGP). We consider a graphical model to describe the DGP of examples
within the SHANS dataset. We use the following variables within our DGP:

e (' - NLI relationship between a premise and hypothesis pair, the causal feature within this
task, sampled from the original dataset.

* Siex. - spurious feature, here the presence of a hypothesis entirely made from words from
the premise. This is a binary categorical variable (present/ not present).

* Squb. - spurious feature, here the presence of a hypothesis that is a contiguous subsequence
of the premise. This is a binary category feature (present/ not present).

* Seconst. - spurious feature, here the presence of hypothesis that is a constituent/subtree of the
premise. Here we have a binary variable (present/ not present).

* X - example from the HANS dataset.
* Y - final label for element X .

The graphical model described by the DGP for producing the S-HANS dataset is given in Figure[I3]
Once again, this graphical model can be represented functionally as

S = fs(Us); (52)
C = fo(S,Uc); (53)
X = fx(C,E,Ux); (54)
Y = fy(C,Uy), (55)
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Figure 14: SHANS SCM. SCM showing the spurious correlations present between the binary pre-
cence of heurstics features Siex., Ssup, and Scong. and the label Y of examples within the S-HANS
dataset, induced through the described sub-sampling process of the S-HANS dataset.

where here we define S to be a categorical feature over the set of the presence of each of
the three heuristics introduced above which we denote, through overloaded notation, by & =
{Slex., Ssub.» Sconst. - More specifically, given the original dataset D that we are sub-sampling from,
the functions that we use within the DGP for the S-HANS dataset are given by:

S ~ cat(S), (56)
Uc ~ Ber(pspurious)§ (57)
C~ {g(f)U(C \ O(S)) i gg i (1): where C = {0, 1} is the entailment label set;  (58)
X ~pp(-|C,S) (59
Yy =6 (60)

Here, cat(S) is a uniform categorical distribution over S which effectively selects the precence of

exactly one of the three spurious feature heuristics. We define C' (S) to be the entailment label that a
particular value of S is spuriously correlated with by design. Moreover, pp(-|C, S) is the conditional
distribution over the dataset examples (premise-hypothesis pairs) that have NLI relationship C' and
the presence of spurious heuristics .S.

We consider the presence of each feature to be separate binary spurious features. The specific
spurious correlations between heuristics and labels Y are chosen to be:

(Slex.)
(Ssub.)
(Sconsl.) =1;

In this way we generate spurious correlations within the dataset through sub-sampling to induce
spurious correlations between the heuristics and Y. In this case, for a dataset example X, the

spurious correlation between the presence of a particular heuristic S = s and C (s) is given as
]P)(Y = C(S)‘X, S = S,8 € X) = Pspurious - (61)

This follows immediately form the sub-sampling process described above. Once again, this aligns
with the definition in Equation (4)) which again justifies the introduced notation.

0;
0;

Q> Q@ &

1.
2.
3.

SCM for SHANS. The DGP again induces a SCM. In particular, considering S as consiting of three
binary spurious features Siex., Ssub. and Sconst.- The SCM has a similar structure to as in the SS and
S-MNLI datasets, and is given in Figure 14| where once again, U again is some hidden confounding
variable.

A.10 FIT oN SHANS

Here we give the results of performing SFT and FIT on the SHANS datasets.
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Trained Features Non-Trained Features

focus(S) A
ignore(C)

Figure 15: SHANS focus accuracies (7). Focus accuracy (Agoeys) Of
Llama-3.1-8B-Instructafter FIT on the SHANS dataset. Here, C refers to the causal
feature (logical relationship between premise and hypothesis) and S the spurious feature (heuristic
used)

Spurious HANS (SHANS) dataset. We generate binary NLI dataset sub-sampled from HANS (Mc-
Coy,[2019), a dataset designed to challenge NLI models by exposing common heuristics they rely on,
such as lexical overlap (whether the hypothesis shares many words with the premise), sub-sequence
(whether the hypothesis is a contiguous sub-sequence of the premise), and constituent (whether the
hypothesis is a grammatical sub-structure of the premise). The presence of these heuristics are spu-
riously correlated with labels through sub-sampling the presence of each of the heuristics from the
original dataset. The degree of co-occurrence is governed by pgpurious, Which varies according to the
test sets described in Section@ We ensure that pgpurious is the same for all feature values within each
dataset split. In particular, we set pgpurious to be 0.5,0.5,0.9,0.25 and 0.9 on Dyin, Diid> Dhigh» Diow
and Dhippeq TEspectively.

Results. Figure [T3] shows the focus accuracy results of performing SFT and FIT on the SHANS
dataset for the Llama-3.1-8B-Instructmodel. As expected, the trained features show high
focus accuracy. However, for non-trained features, we observe lower focus accuracy. This could be
attributed to the overlapping nature of the heuristics in SHANS, which are often graded versions of
each other with different levels of specificity. For instance, the sub-sequence heuristic can overlap
with both lexical overlap and constituent heuristics (e.g., the example with Premise:“Before the actor
slept, the senator ran” and Hypothesis: “The actor slept.” satisfies all three heuristics). This overlap
likely confuses the model during generalisation, as it struggles to distinguish between heuristics not
seen during training and those that are similar. These results suggest a potential limitation of FIT
when dealing with features that are not sufficiently distinct or have significant overlap.
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